workshop small RNAseq

Loading report..

Highlight Samples

Regex mode off

    Rename Samples

    Click here for bulk input.

    Paste two columns of a tab-delimited table here (eg. from Excel).

    First column should be the old name, second column the new name.

    Regex mode off

      Show / Hide Samples

      Regex mode off

        Export Plots

        px
        px
        X

        Download the raw data used to create the plots in this report below:

        Note that additional data was saved in workshop-small-RNAseq_multiqc_report_data when this report was generated.


        Choose Plots

        If you use plots from MultiQC in a publication or presentation, please cite:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        Save Settings

        You can save the toolbox settings for this report to the browser.


        Load Settings

        Choose a saved report profile from the dropdown box below:

        Tool Citations

        Please remember to cite the tools that you use in your analysis.

        To help with this, you can download publication details of the tools mentioned in this report:

        About MultiQC

        This report was generated using MultiQC, version 1.17

        You can see a YouTube video describing how to use MultiQC reports here: https://youtu.be/qPbIlO_KWN0

        For more information about MultiQC, including other videos and extensive documentation, please visit http://multiqc.info

        You can report bugs, suggest improvements and find the source code for MultiQC on GitHub: https://github.com/ewels/MultiQC

        MultiQC is published in Bioinformatics:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        workshop small RNAseq

        A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

        This report has been generated by the nf-core/smrnaseq analysis pipeline. For information about how to interpret these results, please see the documentation.

        Report generated on 2024-10-08, 13:39 ACDT based on data in: /hpc/capacity/SAGC/workshop/sRNA/work/b5/e2464823c3be2fe91fdeb74203edce


        General Statistics

        Showing 64/64 rows and 12/17 columns.
        Sample NameM Ref miRNA readsIsomiR %M IsomiR readsM ReadsError rateM Non-PrimaryM Reads Mapped% MappedM Total seqs% Dups% GCM Seqs
        Acontrol1
        94.6%
        45%
        22.6
        Acontrol1_mature
        1.63%
        0.0
        1.8
        8.9%
        20.4
        Acontrol1_mature_hairpin
        3.86%
        0.0
        0.8
        4.4%
        18.8
        Acontrol1_seqcluster
        0.9
        0.0%
        0.0
        0.9
        Acontrol2
        95.7%
        45%
        23.5
        Acontrol2_mature
        1.41%
        0.0
        1.5
        7.0%
        21.1
        Acontrol2_mature_hairpin
        3.81%
        0.0
        0.7
        3.7%
        19.8
        Acontrol2_seqcluster
        0.6
        63.6%
        1.1
        1.7
        Acontrol3
        94.7%
        44%
        13.6
        Acontrol3_mature
        1.73%
        0.0
        0.8
        6.7%
        12.5
        Acontrol3_mature_hairpin
        3.95%
        0.0
        0.4
        3.2%
        11.8
        Acontrol3_seqcluster
        0.3
        63.4%
        0.6
        0.9
        Acontrol4
        95.0%
        45%
        20.7
        Acontrol4_mature
        1.69%
        0.0
        1.5
        7.9%
        18.4
        Acontrol4_mature_hairpin
        3.87%
        0.0
        0.7
        4.1%
        17.1
        Acontrol4_seqcluster
        0.7
        59.6%
        1.0
        1.7
        Atreated1
        95.6%
        45%
        24.7
        Atreated1_mature
        1.81%
        0.0
        1.3
        6.1%
        21.6
        Atreated1_mature_hairpin
        3.77%
        0.0
        0.6
        3.2%
        20.4
        Atreated1_seqcluster
        0.5
        64.8%
        1.0
        1.6
        Atreated2
        95.5%
        44%
        21.9
        Atreated2_mature
        1.78%
        0.0
        0.5
        2.8%
        19.5
        Atreated2_mature_hairpin
        4.17%
        0.0
        0.4
        2.3%
        19.0
        Atreated2_seqcluster
        0.2
        74.9%
        0.5
        0.7
        Atreated3
        94.6%
        45%
        18.2
        Atreated3_mature
        1.75%
        0.0
        1.3
        7.8%
        16.4
        Atreated3_mature_hairpin
        4.23%
        0.0
        0.6
        4.2%
        15.3
        Atreated3_seqcluster
        0.5
        63.3%
        0.9
        1.4
        Atreated4
        94.8%
        44%
        16.6
        Atreated4_mature
        1.78%
        0.0
        0.7
        5.2%
        14.4
        Atreated4_mature_hairpin
        4.19%
        0.0
        0.4
        3.1%
        13.8
        Atreated4_seqcluster
        0.3
        64.9%
        0.6
        0.9
        Bcontrol1
        96.4%
        43%
        24.8
        Bcontrol1_mature
        1.66%
        0.0
        0.6
        2.8%
        22.8
        Bcontrol1_mature_hairpin
        3.24%
        0.0
        0.3
        1.3%
        22.2
        Bcontrol1_seqcluster
        0.3
        62.9%
        0.5
        0.7
        Bcontrol2
        96.3%
        43%
        18.6
        Bcontrol2_mature
        1.71%
        0.0
        0.5
        3.0%
        17.1
        Bcontrol2_mature_hairpin
        3.38%
        0.0
        0.2
        1.2%
        16.6
        Bcontrol2_seqcluster
        0.2
        63.3%
        0.4
        0.6
        Bcontrol3
        96.4%
        44%
        21.7
        Bcontrol3_mature
        1.66%
        0.0
        0.5
        2.8%
        18.5
        Bcontrol3_mature_hairpin
        3.14%
        0.0
        0.2
        1.1%
        18.0
        Bcontrol3_seqcluster
        0.2
        61.7%
        0.4
        0.6
        Bcontrol4
        96.3%
        43%
        15.2
        Bcontrol4_mature
        1.94%
        0.0
        0.1
        1.5%
        8.4
        Bcontrol4_mature_hairpin
        2.52%
        0.0
        0.1
        1.1%
        8.3
        Bcontrol4_seqcluster
        0.0
        71.3%
        0.1
        0.2
        Btreated1
        95.9%
        42%
        25.4
        Btreated1_mature
        1.67%
        0.0
        0.9
        3.8%
        24.2
        Btreated1_mature_hairpin
        3.20%
        0.0
        0.4
        1.6%
        23.4
        Btreated1_seqcluster
        0.4
        61.6%
        0.7
        1.1
        Btreated2
        96.5%
        42%
        21.0
        Btreated2_mature
        1.89%
        0.0
        0.4
        1.9%
        19.7
        Btreated2_mature_hairpin
        3.15%
        0.0
        0.2
        1.0%
        19.4
        Btreated2_seqcluster
        0.1
        67.8%
        0.3
        0.5
        Btreated3
        96.1%
        42%
        23.1
        Btreated3_mature
        1.75%
        0.0
        0.7
        3.1%
        22.1
        Btreated3_mature_hairpin
        3.33%
        0.0
        0.3
        1.4%
        21.4
        Btreated3_seqcluster
        0.3
        65.3%
        0.5
        0.8
        Btreated4
        96.0%
        43%
        16.2
        Btreated4_mature
        1.76%
        0.0
        0.4
        2.8%
        15.5
        Btreated4_mature_hairpin
        3.29%
        0.0
        0.2
        1.2%
        15.1
        Btreated4_seqcluster
        0.2
        60.9%
        0.3
        0.5

        miRTrace

        miRTrace is a quality control software for small RNA sequencing data developed by Friedländer lab (KTH, Sweden).DOI: 10.1186/s13059-018-1588-9.

        QC Plot

        loading..

        RNA Categories

        loading..

        Read Length Distribution

        loading..

        Contamination Check

        loading..

        miRNA Complexity

        loading..

        mirtop

        Version: 0.4.25

        mirtop is a command line tool to annotate miRNAs and isomiRs and compute general statistics using the mirGFF3 format.DOI: 10.5281/zenodo.45385.

        IsomiR read counts

        Total counts of reads aligned for each isomiR type, over all detected miRNAs.

        The total counts of reads detected as reference miRNA sequences is also shown.

        Since a read can belong to 2 (or more) different isomiRs types (e.g iso_3p and iso_5p), the cumulative read counts shown in this plot for a sample can be higher than its total read count shown in the general statistics.

        For each sample, the mean counts of each type of isomiRs over all detected miRNAs is displayed in a different color.

        The different isomiR types are:

        • iso_3p: a sequence with a 3' end difference because of trimming or templated tailing
        • iso_5p: a sequence with a 5' end difference because of trimming or templated tailing
        • iso_add3p: a sequence with non templated tailing in the 3' end
        • iso_add5p: a sequence with non templated tailing in the 5' end
        • iso_snv: a sequence with a single nucleotide variant

        The ref_miRNA label corresponds to the reference miRNA (canonical sequence).

        loading..

        IsomiR unique read counts

        The number of distinct sequences detected for each isomiR type, over all miRNAs.

        The number of reference miRNA sequences detected is also shown.

        For each sample, the number of miRNAs with each type of isomiRs, is displayed in a different color.

        The different isomiR types are:

        • iso_3p: a sequence with a 3' end difference because of trimming or templated tailing
        • iso_5p: a sequence with a 5' end difference because of trimming or templated tailing
        • iso_add3p: a sequence with non templated tailing in the 3' end
        • iso_add5p: a sequence with non templated tailing in the 5' end
        • iso_snv: a sequence with a single nucleotide variant

        The ref_miRNA label corresponds to the reference miRNA (canonical sequence).

        loading..

        Mean isomiR read counts

        Mean counts for each isomiR type, over all detected miRNAs.

        The mean counts of reads detected as reference miRNA sequences is also shown.

        For each sample, the mean counts of each type of isomiRs over all detected miRNAs is displayed in a different color.

        The different isomiR types are:

        • iso_3p: a sequence with a 3' end difference because of trimming or templated tailing
        • iso_5p: a sequence with a 5' end difference because of trimming or templated tailing
        • iso_add3p: a sequence with non templated tailing in the 3' end
        • iso_add5p: a sequence with non templated tailing in the 5' end
        • iso_snv: a sequence with a single nucleotide variant

        The ref_miRNA label corresponds to the reference miRNA (canonical sequence).

        loading..

        Samtools

        Version: 1.17

        Samtools is a suite of programs for interacting with high-throughput sequencing data.DOI: 10.1093/bioinformatics/btp352.

        Percent Mapped

        Alignment metrics from samtools stats; mapped vs. unmapped reads vs. reads mapped with MQ0.

        For a set of samples that have come from the same multiplexed library, similar numbers of reads for each sample are expected. Large differences in numbers might indicate issues during the library preparation process. Whilst large differences in read numbers may be controlled for in downstream processings (e.g. read count normalisation), you may wish to consider whether the read depths achieved have fallen below recommended levels depending on the applications.

        Low alignment rates could indicate contamination of samples (e.g. adapter sequences), low sequencing quality or other artefacts. These can be further investigated in the sequence level QC (e.g. from FastQC).

        Reads mapped with MQ0 often indicate that the reads are ambiguously mapped to multiple locations in the reference sequence. This can be due to repetitive regions in the genome, the presence of alternative contigs in the reference, or due to reads that are too short to be uniquely mapped. These reads are often filtered out in downstream analyses.

        loading..

        Alignment metrics

        This module parses the output from samtools stats. All numbers in millions.

        loading..

        FastQC

        Version: 0.12.1

        FastQC is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

        Sequence Counts

        Sequence counts for each sample. Duplicate read counts are an estimate only.

        This plot show the total number of reads, broken down into unique and duplicate if possible (only more recent versions of FastQC give duplicate info).

        You can read more about duplicate calculation in the FastQC documentation. A small part has been copied here for convenience:

        Only sequences which first appear in the first 100,000 sequences in each file are analysed. This should be enough to get a good impression for the duplication levels in the whole file. Each sequence is tracked to the end of the file to give a representative count of the overall duplication level.

        The duplication detection requires an exact sequence match over the whole length of the sequence. Any reads over 75bp in length are truncated to 50bp for this analysis.

        loading..

        Sequence Quality Histograms

        The mean quality value across each base position in the read.

        To enable multiple samples to be plotted on the same graph, only the mean quality scores are plotted (unlike the box plots seen in FastQC reports).

        Taken from the FastQC help:

        The y-axis on the graph shows the quality scores. The higher the score, the better the base call. The background of the graph divides the y axis into very good quality calls (green), calls of reasonable quality (orange), and calls of poor quality (red). The quality of calls on most platforms will degrade as the run progresses, so it is common to see base calls falling into the orange area towards the end of a read.

        loading..

        Per Sequence Quality Scores

        The number of reads with average quality scores. Shows if a subset of reads has poor quality.

        From the FastQC help:

        The per sequence quality score report allows you to see if a subset of your sequences have universally low quality values. It is often the case that a subset of sequences will have universally poor quality, however these should represent only a small percentage of the total sequences.

        loading..

        Per Base Sequence Content

        The proportion of each base position for which each of the four normal DNA bases has been called.

        To enable multiple samples to be shown in a single plot, the base composition data is shown as a heatmap. The colours represent the balance between the four bases: an even distribution should give an even muddy brown colour. Hover over the plot to see the percentage of the four bases under the cursor.

        To see the data as a line plot, as in the original FastQC graph, click on a sample track.

        From the FastQC help:

        Per Base Sequence Content plots out the proportion of each base position in a file for which each of the four normal DNA bases has been called.

        In a random library you would expect that there would be little to no difference between the different bases of a sequence run, so the lines in this plot should run parallel with each other. The relative amount of each base should reflect the overall amount of these bases in your genome, but in any case they should not be hugely imbalanced from each other.

        It's worth noting that some types of library will always produce biased sequence composition, normally at the start of the read. Libraries produced by priming using random hexamers (including nearly all RNA-Seq libraries) and those which were fragmented using transposases inherit an intrinsic bias in the positions at which reads start. This bias does not concern an absolute sequence, but instead provides enrichement of a number of different K-mers at the 5' end of the reads. Whilst this is a true technical bias, it isn't something which can be corrected by trimming and in most cases doesn't seem to adversely affect the downstream analysis.

        Click a sample row to see a line plot for that dataset.
        Rollover for sample name
        Position: -
        %T: -
        %C: -
        %A: -
        %G: -

        Per Sequence GC Content

        The average GC content of reads. Normal random library typically have a roughly normal distribution of GC content.

        From the FastQC help:

        This module measures the GC content across the whole length of each sequence in a file and compares it to a modelled normal distribution of GC content.

        In a normal random library you would expect to see a roughly normal distribution of GC content where the central peak corresponds to the overall GC content of the underlying genome. Since we don't know the the GC content of the genome the modal GC content is calculated from the observed data and used to build a reference distribution.

        An unusually shaped distribution could indicate a contaminated library or some other kinds of biased subset. A normal distribution which is shifted indicates some systematic bias which is independent of base position. If there is a systematic bias which creates a shifted normal distribution then this won't be flagged as an error by the module since it doesn't know what your genome's GC content should be.

        loading..

        Per Base N Content

        The percentage of base calls at each position for which an N was called.

        From the FastQC help:

        If a sequencer is unable to make a base call with sufficient confidence then it will normally substitute an N rather than a conventional base call. This graph shows the percentage of base calls at each position for which an N was called.

        It's not unusual to see a very low proportion of Ns appearing in a sequence, especially nearer the end of a sequence. However, if this proportion rises above a few percent it suggests that the analysis pipeline was unable to interpret the data well enough to make valid base calls.

        loading..

        Sequence Length Distribution

        All samples have sequences of a single length (76bp).

        Sequence Duplication Levels

        The relative level of duplication found for every sequence.

        From the FastQC Help:

        In a diverse library most sequences will occur only once in the final set. A low level of duplication may indicate a very high level of coverage of the target sequence, but a high level of duplication is more likely to indicate some kind of enrichment bias (eg PCR over amplification). This graph shows the degree of duplication for every sequence in a library: the relative number of sequences with different degrees of duplication.

        Only sequences which first appear in the first 100,000 sequences in each file are analysed. This should be enough to get a good impression for the duplication levels in the whole file. Each sequence is tracked to the end of the file to give a representative count of the overall duplication level.

        The duplication detection requires an exact sequence match over the whole length of the sequence. Any reads over 75bp in length are truncated to 50bp for this analysis.

        In a properly diverse library most sequences should fall into the far left of the plot in both the red and blue lines. A general level of enrichment, indicating broad oversequencing in the library will tend to flatten the lines, lowering the low end and generally raising other categories. More specific enrichments of subsets, or the presence of low complexity contaminants will tend to produce spikes towards the right of the plot.

        loading..

        Overrepresented sequences by sample

        The total amount of overrepresented sequences found in each library.

        FastQC calculates and lists overrepresented sequences in FastQ files. It would not be possible to show this for all samples in a MultiQC report, so instead this plot shows the number of sequences categorized as overrepresented.

        Sometimes, a single sequence may account for a large number of reads in a dataset. To show this, the bars are split into two: the first shows the overrepresented reads that come from the single most common sequence. The second shows the total count from all remaining overrepresented sequences.

        From the FastQC Help:

        A normal high-throughput library will contain a diverse set of sequences, with no individual sequence making up a tiny fraction of the whole. Finding that a single sequence is very overrepresented in the set either means that it is highly biologically significant, or indicates that the library is contaminated, or not as diverse as you expected.

        FastQC lists all the sequences which make up more than 0.1% of the total. To conserve memory only sequences which appear in the first 100,000 sequences are tracked to the end of the file. It is therefore possible that a sequence which is overrepresented but doesn't appear at the start of the file for some reason could be missed by this module.

        loading..

        Top overrepresented sequences

        Top overrepresented sequences across all samples. The table shows 20 most overrepresented sequences across all samples, ranked by the number of samples they occur in.

        Showing 20/20 rows and 3/3 columns.
        Overrepresented sequenceSamplesOccurrences% of all reads
        CCTGGATGATGATAAGCAAATGCTGACTGAACATGAAGGTCTTAATTAGC
        16
        23684706
        7.2253%
        ATACATGATGATCTCAATCCAACTTGAACTCTCTCACTGATTACTTGATG
        16
        17425308
        5.3158%
        GTTTGTGATGACTTACATGGAATCTCGTTCGGCTGATGACTTGCTGTTGA
        16
        9451964
        2.8834%
        TATCTGTGATGATCTTATCCCGAACCTGAACTTCTGTTGAAAAAAAAAAA
        16
        9568118
        2.9189%
        AGTAGTGATGAAATTCCACTTCATTGGTCCGTGTTTCTGAACCACATGAT
        16
        8527874
        2.6015%
        CTCACTGATGAGTACGTTCTGACTTTCGTTCTTCTGAGTTTGCTGAAGCC
        16
        7702890
        2.3498%
        TCGCGTGATGACATTCTCCGGAATCGCTGTACGGCCTTGATGAAAGCACA
        16
        4468182
        1.3631%
        CTACGGGGATGATTTTACGAACTGAACTCTCTCTTTCTGATGGATTAGTG
        16
        7530235
        2.2972%
        CCTCACTGATGAGTACGTTCTGACTTTCGTTCTTCTGAGTTTGCTGAAGC
        16
        4113311
        1.2548%
        CTGCAGTGATGACTTTCTTAGGACACCTTTGGATTTACCGTGAAAATTAA
        16
        3859038
        1.1772%
        GTGCAATGATGTATTTTATTCAACACATCATTCTGAAAGAACGTGTGGAA
        16
        2391069
        0.7294%
        GTGAAATGATGGCAATCATCTTTCGGGACTGACCTGAAATGAAGAGAATA
        16
        3005689
        0.9169%
        TTTCTATGATGAATCAAACTAGCTCACTATGACCGACAGTGAAAATACAT
        16
        2693182
        0.8216%
        AATACATGATGATCTCAATCCAACTTGAACTCTCTCACTGATTACTTGAT
        16
        3644590
        1.1118%
        AACTGTGATGAAAGATTTGGTCTGTATGTAATAGATTTTATTACTAAATG
        16
        2473131
        0.7545%
        CTGGATGATGATAAGCAAATGCTGACTGAACATGAAGGTCTTAATTAGCT
        16
        6637181
        2.0247%
        TACGGGGATGATTTTACGAACTGAACTCTCTCTTTCTGATGGATTAGTGG
        16
        4505479
        1.3744%
        TCCCTGGTGGTCTAGTGGTTAGGATTCGGCGCTAGATCGGAAGAGCACAC
        16
        3660585
        1.1167%
        TTCCTATGATGAGGACCTTTTCACAGACCTGTACTGAGCTCCGTGAGGAT
        16
        1713310
        0.5227%
        AAGCTATGATGAATTTGATTGCATTGATCGTCTGACATGATAATGTATTT
        16
        2141567
        0.6533%

        Adapter Content

        The cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position.

        Note that only samples with ≥ 0.1% adapter contamination are shown.

        There may be several lines per sample, as one is shown for each adapter detected in the file.

        From the FastQC Help:

        The plot shows a cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position. Once a sequence has been seen in a read it is counted as being present right through to the end of the read so the percentages you see will only increase as the read length goes on.

        loading..

        Status Checks

        Status for each FastQC section showing whether results seem entirely normal (green), slightly abnormal (orange) or very unusual (red).

        FastQC assigns a status for each section of the report. These give a quick evaluation of whether the results of the analysis seem entirely normal (green), slightly abnormal (orange) or very unusual (red).

        It is important to stress that although the analysis results appear to give a pass/fail result, these evaluations must be taken in the context of what you expect from your library. A 'normal' sample as far as FastQC is concerned is random and diverse. Some experiments may be expected to produce libraries which are biased in particular ways. You should treat the summary evaluations therefore as pointers to where you should concentrate your attention and understand why your library may not look random and diverse.

        Specific guidance on how to interpret the output of each module can be found in the relevant report section, or in the FastQC help.

        In this heatmap, we summarise all of these into a single heatmap for a quick overview. Note that not all FastQC sections have plots in MultiQC reports, but all status checks are shown in this heatmap.

        loading..

        Software Versions

        Software Versions lists versions of software tools extracted from file contents.

        SoftwareVersion
        FastQC0.12.1
        Samtools1.17
        mirtop0.4.25

        nf-core/smrnaseq Software Versions

        are collected at run time from the software output.

        Process Name Software Version
        BOWTIE_MAP_GENOME bowtie 1.3.1
        samtools 1.14
        BOWTIE_MAP_HAIRPIN bowtie 1.3.1
        samtools 1.14
        BOWTIE_MAP_MATURE bowtie 1.3.1
        samtools 1.14
        BOWTIE_MAP_SEQCLUSTER bowtie 1.3.1
        samtools 1.14
        CUSTOM_DUMPSOFTWAREVERSIONS python 3.11.4
        yaml 6.0
        FASTP fastp 0.23.4
        FASTQC_RAW fastqc 0.12.1
        FASTQC_TRIM fastqc 0.12.1
        FORMAT_HAIRPIN fastx_toolkit 0.0.14
        FORMAT_MATURE fastx_toolkit 0.0.14
        INDEX_GENOME bowtie 1.3.1
        INDEX_HAIRPIN bowtie 1.3.1
        INDEX_MATURE bowtie 1.3.1
        MIRDEEP2_MAPPER mapper 2.0.1
        MIRDEEP2_PIGZ" pigz 2.3.4
        MIRDEEP2_RUN" mirdeep2 2.0.1
        MIRTOP_QUANT" mirtop 0.4.25
        MIRTRACE_RUN" mirtrace 1.0.1
        PARSE_HAIRPIN" seqkit 2.3.0
        PARSE_MATURE" seqkit 2.3.0
        SAMPLESHEET_CHECK python 3.8.3
        SAMTOOLS_FLAGSTAT samtools 1.17
        SAMTOOLS_IDXSTATS samtools 1.17
        SAMTOOLS_INDEX samtools 1.17
        SAMTOOLS_SORT samtools 1.17
        SAMTOOLS_STATS samtools 1.17
        SEQCLUSTER_SEQUENCES" seqcluster 1.2.9
        TABLE_MERGE r-base 3.6.2
        Workflow Nextflow 23.10.0
        nf-core/smrnaseq 2.2.4

        nf-core/smrnaseq Workflow Summary

        - this information is collected when the pipeline is started.

        Core Nextflow options

        revision
        2.2.4
        runName
        tender_curran
        containerEngine
        singularity
        launchDir
        /hpc/capacity/SAGC/workshop/sRNA
        workDir
        /hpc/capacity/SAGC/workshop/sRNA/work
        projectDir
        /homes/daniel.thomson/.nextflow/assets/nf-core/smrnaseq
        userName
        daniel.thomson
        profile
        sahmri
        configFiles
        N/A

        Input/output options

        input
        /cancer/storage/SAGC/workshop/sRNA/samplesheet.csv
        protocol
        custom
        outdir
        /cancer/storage/SAGC/workshop/sRNA/outs
        multiqc_title
        workshop small RNAseq

        Reference genome options

        mirtrace_species
        hsa
        fasta
        /homes/daniel.thomson/References/nfsmRNAseq/fasta/Ensembl_download/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa
        mirna_gtf
        /homes/daniel.thomson/References/nfsmRNAseq/mirna_gtf/hsa.gff3
        mature
        /homes/daniel.thomson/References/nfsmRNAseq/mature.fa
        hairpin
        /homes/daniel.thomson/References/nfsmRNAseq/hairpin.fa
        save_reference
        true

        Trimming options

        clip_r1
        0
        three_prime_clip_r1
        0
        three_prime_adapter
        AGATCGGAAGAGCACACGTCT
        fastp_min_length
        16
        fastp_max_length
        50

        Institutional config options

        config_profile_description
        South Australian Health and Medical Research Institute (SAHMRI) HPC cluster profile.
        config_profile_contact
        Nathan Watson-Haigh (nathan.watson-haigh@sahmri.com)
        config_profile_url
        https://sahmri.org.au

        Max job request options

        max_cpus
        24
        max_memory
        124 GB
        max_time
        14d